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Landau Fermi-Liquid Theory

[ Landau (1951) ]: A finite density of interacting fermions 
doesn't depend on specific microscopic dynamics of 
individual systems :– 

Ground state: characterized by a sharp Fermi 
surface (FS) in momentum space

Low energy excitations: weakly interacting quasi-
particles around FS

 ❶ Quasiparticle lifetime diverges close to FS ☛ Decay rate 

 ❷ Electron has a finite overlap with quasiparticle adiabatically connected to         
  non-interacting Fermi gas ☛ quasi-particle wt 



  

Breakdown of FL Theory
can be 

diagonalized in 
single-particle 

basis of      
quasiparticles  

no such basis 
 ☛ genuinely 

interacting 
QFT   

Low energy QFT

Fermi Liquid
Metals

Non-Fermi Liquid
States

can arise when FS 
coupled with 

a 
gapless boson

Heavy fermion compounds 
near magnetic QCPs, 

QCP for Mott Transitions,
nematic QCP

☛ NFL phase at QPT Bose metals &  = 1/2 FQH state support ν
fractionalized fermionic excitations

+ emergent gauge field  
☛ NFL phases in extended region 

in parameter space  

gapless boson
by

dynamical tuning

gapless boson by
fine-tuning microscopic

parameters



  

Unusual Scaling Phenomenology

 ❶ Calculational framework that replaces FL theory needed.

 ❷ QFT of metals ☛ low symmetry + extensive gapless modes need to be kept in       
   low energy theories  ☛ less well understood compared to relativistic QFTs.             
 

[ Custers et al, Nature (2003) ]

 

[ (T) – ρ ρ0 ] ∝ Tε     
  =1 for NFL (yellow)ε

  =2 for FL (blue)ε



  

Goals

Construct minimal field theories that capture universal low-energy physics.

Understand the dynamics in controlled ways.

Eventually come up with a systematic classification for NFL's.

Broadly we have 2 cases:

Dynamics depends on FS dim (m) in addition to spacetime dim (d+1). Here 
we focus on  m & d-m dependence for case 1.

critical boson mom q = 0  
☛Ising-nematic QCP, 

gauge field + spinon FS

critical boson mom q ≠ 0  
☛SDW or 

CDW critical pts



  

Ising-Nematic QPT
From  theoretical viewpoint☛ Ising-nematic (ISN) QCP one of the simplest 
phase transitions in metals providing a remarkable strongly-coupled NFL with 
critical fluctuations of ISN order.

                                       

(2+1)-d  ☛  simple choice  ☛  change from ■ to ▬ symmetry.

QPT to nematic states with spontaneously broken point group symmetry           
☛ order parameter is a real scalar boson with strong qtm fluctuations at QCP.

FS has Z4 sym

FS has Z2 sym



  

Dimension as a Tuning Parameter
For d < upper critical dim dc ☛ theory flows to interacting NFL at low 

energies.

For d > dc ☛ expected to be described by FL .

Choice of regularization scheme for systematic RG in relativistic QFT :
☛ Locality                                                                                             
☛ Consistent with many symmetries

 Our Dimensional Regularization (DR) scheme:

☛ Advantage ⇛ locality maintained                                                                 
[ Locality broken in DR scheme of Senthil & Shankar (2009) ]

☛ Disadvantage ⇛  some symmetries broken [ global U(1) ]



  

Two Patch Theory 

Fermi SeaFermi Sea

Fermi Sea

Low energy limit

 ☛ Fermions coupled with boson 

with mom tangential to FS

☛ scatter tangentially

Circular FS (m=1)  ☛ fermions in different patches

decoupled except antipodal points

Not true for 

m-dim FS 

with m > 1

kF  enters as a 
dimensionful parameter

Time-Reversal 
Invariance assumed



  

Significance of m for d < dc 

d controls strength of qtm fluctuations & m controls extensiveness of 
gapless modes.

For d < dc  ☛ an emergent locality in mom space for m = 1, but not for m > 1 .

For  m = 1  ☛ observables local in mom space (e.g. Green’s fns) can be 
extracted from local patches  ☛ need not refer to global properties of FS 

 ☛ (2+1)-d ISN QCP described by a stable NFL state slightly below dc =5/2.

[  D. Dalidovich and S-S. Lee, Phys. Rev. B 88, 245106 (2013) ]   

 For m > 1 ☛ UV/IR mixing ☛ low-energy physics affected by gapless modes
on entire FS ☛effects patch theory cannot capture through renormalization 
of local properties. 



  

Role  of  “ kF”  

We devise DR extending both dim & co-dim  ☛  FS with m > 1 
included naturally. 

[  IM and S-S. Lee, PRB 92, 035141 (2015)  ]

We provide a controlled analysis showing how interactions + 
UV/IR mixing interplay to determine low-energy scalings in 
NFL's with general m.

For m > 1 ☛ size of FS ( kF ) modifies naive scaling based on 
patch description ☛ kF becomes a ‘naked scale’ .



  

Generic Fermi Surface

At a chosen point K* on FS : kd-m  ⊥ local Sm  ☛  its magnitude 
measures deviation from kF . 

L(k) = ( kd-m+1 , kd-m+2 ,…, kd )  ☛ tangential along the local Sm. 

Patch of m-dim FS 
of arbitrary shape



  

Fermions on Antipodal Points

right (left) moving fermion 
with flavour  j=1,2,...,N



  

Action

2 halves of m-dim FS 
coupled with one critical boson 
in (m+1)-space & one time dim:



  

FS in Terms of Dirac Fermions 

Interpret |L(k)| as a continuous  flavour 

☛ Each (m+2)-d spinor can be viewed 

as a (1+1)-d Dirac fermion

mom cut-off



  

Momentum Regularization along FS

Compact FS approx by 2 sheets of non-compact FS with a 
momentum regularization suppressing modes far away from ±K* :

We keep dispersion parabolic but exp factor effectively makes FS 
size finite by damping                        fermion modes.



  

Theory in General Dimensions

Add (d-m-1) spatial dim 
☛ co-dimensions 



  

Applying DR
There is an implicit UV cut-off Λ for K with k << Λ  << kF .

kF   ☛  sets FS size; 

Λ   ☛  sets the largest energy fermions can have  ⊥ FS .                             

We consider RG flow by changing Λ & requiring low-energy observables 
independent of it. 

To access perturbative NFL, we fix m & tune d towards a critical dim dc 
at which qtm corrections diverge logarithmically in Λ .



  

Critical Dimension
Naïve critical dim ☛ scaling dim of e = 0 :

True critical dim ☛ one-loop fermion self-energy Σ1(q) blows up 
logarithmically :



  

One-Loop Results for d = dc– ϵ

Dynamical critical exponent

 Anomalous dimensions for 
       fermions & boson

Effective coupling 
& control parameter 

in 
loop expansions

Fixed points 

Interacting Fixed Point



  

Stable NFL Fixed Point

eeff

RG Flow

Low energy limit

☛ theory flows to 

a

Stable

NFL

Fixed Point

Small  eeff  expansion :

For small ϵ, interacting f.p.
perturbatively accessible 

though e has +ve scaling dim 
for 1<m<2

eef f  marginal at dc



  

Two-Loop Results : Boson Self-Energy  

For m > 1  ☛  

☛kF  suppressed ☛ no correction at 2-loop

For m = 1  ☛ UV-finite, gives a finite correction ☛



  

Two-Loop Results : Fermion Self-Energy  

For m > 1  ☛  

☛ no correction at 2-loop

For m = 1  ☛ UV-divergent



  

Pairing Instabilities of Critical FS States  

Regular FL unstable to arbitrary weak interaction in BCS channel leading 
to Cooper pairing  ☛  How about a critical FS ?

Metlitski, Mross, Sachdev & Senthil [ PRB 91, 115111 (2015) ] ☛  studied SC 
instability in (2+1)-d for NFL ☛ perturbative control involved breaking 
locality

Chung, IM, Raghu & Chakravarty [ Phys. Rev. B 88, 045127 (2013) ] 
☛ found Hatree-Fock soln of self-consistent gap eqn for a FS coupled to a 
transverse U(1) gauge field in (3+1)-d.

We want to consider ISN scenario for m ≥ 1 using dimensional 
regularization ☛ locality mantained

[  IM,  arXiv:1608.01320]



  

Superconducting Instability

Add relevant 4-fermion terms
to analyse SC instability :

For simplicity , we consider s-wave case with two flavours



  

Feynman Diagrams

VS VS

p1, j2

p3, j1 p4, j2

p2, j1

k, j1

p1 − p3 + k, j 2

p1 , j 1

p2 , j 1 p1 , j 2

p2 , j 2

p1 − p2

k VS

p1, j2 p2, j1p1 − k, j2

p3 − k, j1 p4, j2p3, j1

kVS

p1, j2 p2, j1

p4 − k, j2

p2 − k, j 1

p4, j2p3, j1

ẽ VS

p1, j2

p3, j1 p4, j2

p2, j1

k, j1

p1 − p3 + k, j 2



  

Beta-Fn for VS

Scatterings in pairing channel enhanced by volume of FS ~ (kF )m/2 . 

 Effective coupling that dictates potential instability :

       marginal at co-dim d - m = 1.

Aim ☛ study how eeff affects pairing instability. 



  

Beta-Fn for VS ...

 

.



  

Solutions for  



  

Solutions for  



  

Fixed Points



  

Fixed Points



  

Epilogue
RG analysis for QFTs with FS ☛ scaling behaviour of NFL states in a 
controlled approx.

m-dim FS with its co-dim extended to a generic value ☛ stable NFL 
fixed points identified using  ϵ = dc – d as perturbative parameter. 

SC instability in such systems as a fn of dim & co-dim of FS. 

Key point ☛  kF enters as a dimensionful parameter unlike in 
relativistic QFT  ☛  modify naive scaling arguments. 

Effective coupling constants ☛ combinations of original coupling 
constants & kF .



  

Thank you for your attention !



  

A Physical Realization for d=3, m=1

Fermi line in 
3d mom space

Turn on p-wave SC order parameter 
☛ gap out the cylindrical FS 

except for a line node



  

Line of Dirac Points

(a) m-dim FS embedded in d-dim mom space.

(b) Spinor has 2 bands:

For each L(k)  ☛ Dirac point ≡( k1=0,k2=0,…,kd-m= – (L(k))
2 ) around 

which energy disperses linearly like a Dirac fermion in the (d-m)-
dim subspace.



  

Two-point Fns at IR Fixed Point  

Using RG eqns  ☛ 

One-loop order  ☛ 
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