#### Late Time Cosmic Acceleration

#### Md. Wali Hossain

# Ф

Centre for Theoretical Physics JMI, New Delhi, India

Department of Physics, Universitè de Montrèal, Montrèal, Canada  $4^{\mathrm{th}}$  November, 2014

- Standard Cosmology
- Observational Evidences
- Theoretical Models

# **Cosmic History**



Figure : Cosmic history. Picture is taken from wfirst.gsfc.nasa.gov.

Cosmological Scale > 100 Mpc.

 $1 Mpc = 3 \times 10^{22} m.$ 

 $\label{eq:cosmological Scale} \mbox{Cosmological Scale} > 100 \mbox{ Mpc}. \qquad 1 \mbox{Mpc} = 3 \times 10^{22} \mbox{ m}.$ 

Cosmological Principles: Viewed on a sufficiently large scale, Universe looks same in all directions for all observers.

 $\label{eq:cosmological Scale} \mbox{Cosmological Scale} > 100 \mbox{ Mpc}. \qquad 1 \mbox{Mpc} = 3 \times 10^{22} \mbox{ m}.$ 

Cosmological Principles: Viewed on a sufficiently large scale, Universe looks same in all directions for all observers.

• No preferred directions  $\implies$  lsotropy.

 $\label{eq:cosmological Scale} \mbox{Cosmological Scale} > 100 \mbox{ Mpc}. \qquad 1 \mbox{Mpc} = 3 \times 10^{22} \mbox{ m}.$ 

Cosmological Principles: Viewed on a sufficiently large scale, Universe looks same in all directions for all observers.

- No preferred directions  $\implies$  Isotropy.
- One part of the Universe is approximately same with any other part
   Homogeneity.

Universe is expanding  $\implies$  One of the most important discoveries in cosmology.







Universe is expanding  $\implies$  One of the most important discoveries in cosmology.





#### Hubble's Law:

 $v_{\rm r} = H_0 D$ .

 $v_r$  = recessional velocity, D = the proper distance (which can change over time, unlike the comoving distance which is constant) from the galaxy to the observer,  $H_0$  = a constant known as Hubble's constant.





$$rac{\lambda_{
m o}}{\lambda_{
m e}} = rac{a(t_0)}{a(t)}$$

Φ



P

For small redshift  $\Longrightarrow$   $(cz \approx H_0 D = v_r)$ .

For small redshift  $\Longrightarrow (cz \approx H_0 D = v_r)$ .

## Hubble's Data (1929)



Figure : In 1929. Taken from www.astronomy.ohio-state.edu/ pogge/.

For small redshift  $\Longrightarrow (cz \approx H_0 D = v_r)$ .

#### Hubble's Data (1929)





Figure : Recent result. Taken fom firedrake.bu.edu.

Friedmann-Lemaître-Robertson-Walker (FLRW) metric: Expanding homogeneous and isotropic Universe can be represented by,

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t) \left( \frac{\mathrm{d}r^2}{1 - kr^2} \mathrm{d}r^2 + r^2 \left( \mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2 \right) \right)$$

 $k \Longrightarrow A$  constant representing the curvature of the space  $\Longrightarrow$ 

- $k > 0 \implies$  Closed Universe.
- *k* < 0 ⇒ Open Universe.
- $k = 0 \implies$  Flat Universe.





Universe with *positive* curvature. Diverging line converge at great distances. Triangle angles add to more than 180°

Universe with *negative* curvature. Lines diverge at ever increasing angles. Triangle angles add to less than 180°.



Universe with no curvature. Lines diverge at constant angle. Triangle angles add to 180°.



Taken from www.astronomynotes.com.

Solving Einstein's equation of  $GR \implies$  Friedmann equation,

$$\left(rac{\dot{a}}{a}
ight)^2 = H^2 = rac{1}{3M_{
m Pl}^2}
ho - rac{k}{a^2}\,.$$

H = Hubble parameter =  $\dot{a}/a$  and we have taken c = 1.

 $M_{\rm Pl}^2 = 1/8\pi G =$  Planck mass.

 $\rho = \rho_{\rm m} + \rho_{\rm r} + \rho_{\rm A} =$  total density.

We can also define curvature density  $\implies \rho_k = 3M_{\rm Pl}^2 k/a^2$ . Observations suggest  $\rho_k \rightarrow 0 \implies$  Makes life simpler.

Solving Einstein's equation of  $GR \implies$  Friedmann equation,

$$\left(rac{\dot{a}}{a}
ight)^2 = H^2 = rac{1}{3M_{
m Pl}^2}
ho - rac{k}{a^2}$$
 .

H = Hubble parameter =  $\dot{a}/a$  and we have taken c = 1.

 $M_{\rm Pl}^2 = 1/8\pi G =$  Planck mass.

 $ho = 
ho_{\rm m} + 
ho_{\rm r} + 
ho_{\rm A} =$  total density.

We can also define curvature density  $\implies \rho_k = 3M_{\rm Pl}^2 k/a^2$ . Observations suggest  $\rho_k \rightarrow 0 \implies$  Makes life simpler.

Raychaudhuri equation,

$$rac{\ddot{a}}{a} = \dot{H} + H^2 = -rac{1}{6M_{
m Pl}^2}\left(
ho + 3p
ight)\,.$$

p = pressure.

Pressure due to curvature term  $\implies p_k = kM_{\rm Pl}^2/a^2 \implies \rho_k + 3p_k = 0.$ 

#### Some important cosmological parameters:

• Hubble parameter  $\implies$   $H = \dot{a}/a$ . Present value from Planck + WP $\implies$   $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{Mpc}^{-1}$ .

#### Some important cosmological parameters:

- Hubble parameter  $\implies$   $H = \dot{a}/a$ . Present value from Planck + WP $\implies$   $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{Mpc}^{-1}$ .
- $\rho_{\rm c} \Longrightarrow$  Critical density =  $3H^2 M_{\rm Pl}^2$ . Present value  $\Longrightarrow \rho_{\rm c0} \sim 10^{-47} {\rm GeV}^4$ .

#### Some important cosmological parameters:

- Hubble parameter  $\implies$   $H = \dot{a}/a$ . Present value from Planck + WP $\implies$   $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{Mpc}^{-1}$ .
- $\rho_{\rm c} \Longrightarrow$  Critical density =  $3H^2 M_{\rm Pl}^2$ . Present value  $\Longrightarrow \rho_{\rm c0} \sim 10^{-47} {\rm GeV}^4$ .
- Density parameter  $\implies \Omega = \rho/\rho_c$ .
- Equation of state  $\implies w = \frac{Pressure}{Density}$ . For matter  $\implies w_m = 0$ , For radiation  $\implies w_r = 1/3$ . For cosmological constant  $\implies w_{\Lambda} = -1$ .

#### constraint on the curvature term:



Figure : P. A. R. Ade et al., A&A 571, A16 (2014). Red for *Planck* + *WP* and blue for *Planck* + *WP* + *BAO*.

**P** 



Figure : colored contours are for Planck + WP + highL (colour-coded by the value of H0). Black line contours are for Planck + WP + highL + lensing. Blue contours are for Planck + WP + highL + lensing + BAO. Planck Collaboration: P. A. R. Ade et al., A&A 571, A16 (2014). Edited picture is taken from scienceblogs.com/startswithabang/2013/05/23/what-is-dark-energy-2/.

Components of the Universe:

- Matter  $\implies \Omega_{\rm m0} = 0.31$ .
- Radiation  $\implies \Omega_{\rm r0} \sim 10^{-4}$ .
- Dark energy  $\implies \Omega_{\rm DE0} = 0.69$ .
- Spatial curvature  $\implies \Omega_{k0}$  is Nearly zero.



Components of the Universe:

- Matter  $\implies \Omega_{\rm m0} = 0.31$ .
- Radiation  $\implies \Omega_{\rm r0} \sim 10^{-4}$ .
- Dark energy  $\implies \Omega_{\rm DE0} = 0.69$ .
- Spatial curvature  $\implies \Omega_{k0}$  is Nearly zero.



 $\begin{array}{l} \mbox{Total density} \Longrightarrow \Omega = \Omega_{\rm m} + \Omega_{\rm r} + \Omega_{\rm DE} + \Omega_{\rm k} \\ \Omega = 1 \mbox{ when } \Omega_{\rm k} = 0 \Longrightarrow \mbox{Flat Universe.} \end{array}$ 

If the universe is flat and  $\Omega_{\rm m0}\approx$  1, then the age of the universe  $\Longrightarrow$  0.66/H\_0

If the universe is flat and  $\Omega_{m0} \approx 1$ , then the age of the universe  $\implies 0.66/H_0 \approx 9 \text{ Gyrs} \implies$  shorter than the age of oldest stars  $\implies$  Age crisis problem.

If the universe is flat and  $\Omega_{m0} \approx 1$ , then the age of the universe  $\implies 0.66/H_0 \approx 9 \text{ Gyrs} \implies$  shorter than the age of oldest stars  $\implies$  Age crisis problem.

If the universe is flat and  $\Omega_{m0}\approx 0.3$  and  $\Omega_{\Lambda}=0.7$ , then the age of the universe is  $0.96/H_0\approx 13.8~\rm{Gyrs}$ 

 $1/H_0\approx 14.4$  Gyrs.

If the universe is flat and  $\Omega_{m0} \approx 1$ , then the age of the universe  $\implies 0.66/H_0 \approx 9 \text{ Gyrs} \implies$  shorter than the age of oldest stars  $\implies$  Age crisis problem.

If the universe is flat and  $\Omega_{m0}\approx 0.3$  and  $\Omega_{\Lambda}=0.7$ , then the age of the universe is  $0.96/H_0\approx 13.8~\rm{Gyrs}$ 

 $1/H_0\approx 14.4$  Gyrs.

Age of the Universe  $\implies$  13.8 Gyrs (Planck+WP+highL+BAO).

Type Ia Supernovae  $\implies$  occur in binary systems in which one of the stars is a white dwarf while the other can vary from a giant star to an even smaller white dwarf.



White dwarf accretes matter from a companion  $\implies$  Exceeds the Chandrasekhar limit  $(1.44M_{\odot}) \implies$  The electron degeneracy pressure fails to support the gravitational pressure  $\implies$  Temperature increases due to compression  $\implies$  Carbon fusion  $\implies$  Type Ia supernova.

- Their intrinsic luminosity is know  $\implies$  Standard candles.
- Their apparent luminosity can be measured.

Using these two, observations gives us the distance modulus,

$$\mu = 5 \log_{10} \left( \frac{d_{\rm L}}{\rm Mpc} \right) + 25 \,. \label{eq:multiplicative}$$

Where,

$$d_{\mathrm{L}} = (1+z) \int_0^z rac{\mathrm{d}z'}{H(z')} \, .$$

is called the luminosity distance.



Ф



Φ

# What Is Dark Energy?

Which causes the acceleration of the Universe  $\Longrightarrow$  Gives –ve pressure  $\Longrightarrow$   $\ddot{a}>0.$ 

# What Is Dark Energy?

Which causes the acceleration of the Universe  $\implies$  Gives -ve pressure  $\implies \ddot{a} > 0$ .

$$\frac{\ddot{a}}{a}=-\left(\rho+3p\right)\,.$$
 So  $\ddot{a}>0 \Longrightarrow p/\rho<-1/3 \Longrightarrow w<-1/3.$ 

# What Is Dark Energy?

Which causes the acceleration of the Universe  $\implies$  Gives -ve pressure  $\implies \ddot{a} > 0$ .

$$rac{\ddot{a}}{a}=-\left(
ho+3p
ight)$$
 . So  $\ddot{a}>0$   $\Longrightarrow$   $p/
ho<-1/3$   $\Longrightarrow$   $w<-1/3$ .

After *Planck* 2013 results constraint on the equation of stat of dark energy is  $w = -1.13^{+0.24}_{-0.25}$  (2 $\sigma$  limits).



Figure : Planck+WP (red) and Planck+WP+BAO (blue)
### Cosmological Constant As The Dark Energy

Present Universe is dark energy dominated  $\Longrightarrow \Omega_{\rm m0} \approx 0.3$  and  $\Omega_{\rm DE} \approx 0.7.$ 

### Cosmological Constant As The Dark Energy

Present Universe is dark energy dominated  $\Longrightarrow \Omega_{\rm m0} \approx 0.3$  and  $\Omega_{\rm DE} \approx 0.7.$ 

Dark energy  $\implies$  Cosmological constant  $\Lambda$ 

- $\implies$  Equation of state is  $-1 \implies$  within the *Planck* bound.
- $\implies$  Solves the problem of age crisis of the Universe
- $\implies$  Fits with data very well.

### Cosmological Constant As The Dark Energy

Present Universe is dark energy dominated  $\Longrightarrow \Omega_{\rm m0} \approx 0.3$  and  $\Omega_{\rm DE} \approx 0.7.$ 

Dark energy  $\implies$  Cosmological constant  $\Lambda$ 

- $\implies$  Equation of state is  $-1 \implies$  within the *Planck* bound.
- $\implies$  Solves the problem of age crisis of the Universe
- $\implies$  Fits with data very well.
- $\implies$  Fine tuning problem



# Scalar Field as Dark Energy

One can also think of dynamical dark energy where the energy density of the dark energy component varies with time  $\implies e.g.$ , a slowly rolling scalar field  $\implies$  QUINTESSENCE:

# Scalar Field as Dark Energy

One can also think of dynamical dark energy where the energy density of the dark energy component varies with time  $\implies e.g.$ , a slowly rolling scalar field  $\implies$  QUINTESSENCE:

$$\mathcal{L}_{\phi} = rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + V(\phi) \, .$$

In flat FRW background:

Density  $\implies \rho_{\phi} = (1/2)\dot{\phi}^2 + V$ 

Pressure  $\implies p_{\phi} = (1/2)\dot{\phi}^2 - V.$ 

### Dynamical Dark Energy

• Equation of state of the scalar field is given by,

$$w_{\phi}=rac{p_{\phi}}{
ho_{\phi}}=rac{\dot{\phi}^2-2V}{\dot{\phi}^2+2V}\,.$$

And the energy density,

$$\rho_{\phi} = \rho_{\phi 0} \mathrm{e}^{-3 \int (1 + \mathrm{w}_{\phi}) \mathrm{da/a}} \,.$$

 $\implies$  Negative pressure can be achieved when  $\dot{\phi}^2 < 2V$ .

### Dynamical Dark Energy

• Equation of state of the scalar field is given by,

$$w_{\phi}=rac{p_{\phi}}{
ho_{\phi}}=rac{\dot{\phi}^2-2V}{\dot{\phi}^2+2V}\,.$$

And the energy density,

$$\rho_{\phi} = \rho_{\phi 0} \mathrm{e}^{-3 \int (1 + \mathrm{w}_{\phi}) \mathrm{da/a}} \,.$$

 $\implies$  Negative pressure can be achieved when  $\dot{\phi}^2 < 2V$ .

- If  $\dot{\phi}^2 \gg V(\phi) \Longrightarrow w_{\phi} \approx 1 \Longrightarrow \rho_{\phi} \sim a^{-6}$ .
  - If  $V(\phi) \gg \dot{\phi}^2 \Longrightarrow w_{\phi} \approx -1 \Longrightarrow \rho_{\phi} \approx \text{Constant.}$

So  $\rho_{\phi} \sim a^{-n}$  where  $0 \leq n \leq 6$ .

• Two kind of behavior  $\implies$  Tracker and Thawing.

#### Tracker

Scalar field tracks the background during the radiation and matter era and take over matter at recent past  $\implies$  Late time solution is an attractor for a wide range of initial conditions

P. J. Steinhardt, L. -M. Wang and I. Zlatev, PRD 59, 123504 (1999)

#### Tracker

Scalar field tracks the background during the radiation and matter era and take over matter at recent past  $\implies$  Late time solution is an attractor for a wide range of initial conditions

P. J. Steinhardt, L. -M. Wang and I. Zlatev, PRD 59, 123504 (1999)



Figure : Schematic diagram of tracker behavior

- All paths are converging to a common evolutionary track.
- Not all potential can give rise to tracker behavior ⇒ A limitation.

• 
$$\Gamma > 1$$
 where  $\Gamma = \frac{V''V}{V'^2}$ .

- Runaway potentials like  $\frac{1}{\phi^n}$  or exponential potential  $e^{M/\phi}$  can give rise to tracker solution.
- Field's EoS goes towards -1.

#### Tracker



Figure : Schematic diagram of inverse power law potential, a runaway potential.

- Steep nature of the potential is needed. Hubble friction 3Hφ increases since φ increases while rolling down the steep region of the potential ⇒ Field's evolution freezes and energy density becomes comparable with the background energy density ⇒ Field starts evolving and follow the background up to recent past.
- Along the common evolution path field's EoS nearly follows the background EoS and  $w_{\phi} \approx \frac{w_{\rm B} 2(\Gamma 1)}{(2\Gamma 1)}$ . For  $V \sim 1/\phi^n$  during matter era  $w_{\phi} = -\frac{2}{n+2}$ .
- Some potentials which reduce to inverse power law and exponential nature asymptotically can also give tracker solution → Example: Double exponential or cos hyperbolic

# Thawing



Figure : Schematic diagram of the potential leads to thawing behavior.

- Field's energy density remains constant during the early time for huge Hubble damping.
- Field's EoS starts moving away from -1 towards higher values from the recent past.
- Dark energy can be transient as the field starts evolving at the recent past.
- There is no common path of evolution and the system is very much sensible to the initial conditions.

# Thawing



Figure : Schematic diagram of thawing behavior.

Figure : Schematic diagram of thawing behavior.

### Extended Quintessence:

 $\mathcal{S} = \mathcal{S}_{\mathrm{EH}} + \mathcal{S}_{\mathrm{m}} \left( \mathcal{C}(\phi) g_{\alpha\beta}; \Psi_{\mathrm{m}} \right) \,.$ 

 $C(\phi) = e^{2\beta\phi/M_{Pl}}$ , where  $\beta$  is the coupling constant= $0.036 \pm 0.016$  (*Planck*, WP, BAO).

V. Pettorino, PRD 88, no. 6, 063519 (2013)

# Extended Quintessence:

 $\mathcal{S} = \mathcal{S}_{\mathrm{EH}} + \mathcal{S}_{\mathrm{m}} \left( \mathcal{C}(\phi) g_{\alpha\beta}; \Psi_{\mathrm{m}} \right) \,.$ 

 $C(\phi) = e^{2\beta\phi/M_{\rm Pl}}$ , where  $\beta$  is the coupling constant= $0.036 \pm 0.016$  (*Planck*,WP,BAO).

V. Pettorino, PRD 88, no. 6, 063519 (2013)

# F(R) gravity:

Ricci scalar in Einstein Hilbert term is replaced by a function of  $R \implies$  Can be transformed to coupled quintessence by doing a conformal transformation from Jordan frame to Einstein frame.

A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010)

### Models for Late Time Acceleration

# Galileon:

A. Nicolis, R. Rattazzi and E. Trincherini, PRD 79, 064036 (2009)

$$\mathcal{L}^{(1)} = \phi$$

$$\mathcal{L}^{(2)} = (\partial_{\mu}\phi)^{2}$$

$$\mathcal{L}^{(3)} = (\partial_{\mu}\phi)^{2}\Box\phi$$

$$\mathcal{L}^{(4)} = (\partial_{\mu}\phi)^{2}[(\Box\phi)^{2} - (\partial_{\mu}\partial_{\nu}\phi)^{2}]$$

$$\mathcal{L}^{(5)} = (\partial_{\mu}\phi)^{2}[(\Box\phi)^{3} - 3(\partial_{\mu}\partial_{\nu}\phi)^{2}\Box\phi + 2\partial_{\mu}\partial_{\nu}\phi\partial^{\nu}\partial^{\alpha}\phi\partial_{\alpha}\partial^{\mu}\phi]$$

- Galileon Has higher derivative terms in the Lagrangian.
- Possesses shift symmetry  $(\phi \rightarrow \phi + b_{\mu}x^{\mu} + c)$  in Minkowski background.
- Gives second order EoM.
- Can preserve local physics through Vainshtein mechanism.
- Has superluminality problem.

### Massive Gravity:

C. de Rham, G. Gabadadze and A. J. Tolley, PRL 106, 231101 (2011)

$$\mathcal{S}_{\rm mg} = \frac{m^2 M_{Pl}^2}{8} \int \mathrm{d}^4 x \sqrt{-g} \, \left[ U_2 + \alpha_3 U_3 + \alpha_4 U_4 \right],$$

where,

$$\begin{split} & U_2 = 4([\mathcal{K}]^2 - [\mathcal{K}^2]) \\ & U_3 = [\mathcal{K}]^3 - 3[\mathcal{K}][\mathcal{K}^2] + 2[\mathcal{K}^3] \\ & U_4 = [\mathcal{K}]^4 - 6[\mathcal{K}]^2[\mathcal{K}^2] + 3[\mathcal{K}^2]^2 + 8[\mathcal{K}][\mathcal{K}^3] - 6[\mathcal{K}^4] \,, \end{split}$$

and

$$\mathcal{K}^{\mu}_{
u} = \delta^{\mu}_{
u} - \sqrt{g^{\mulpha}\partial_{lpha}\phi^{\mathsf{a}}\partial_{
u}\phi^{\mathsf{b}}\eta_{\mathsf{ab}}}\,,$$

29 / 40

 $\begin{array}{l} \mathsf{PROBLEM} \implies \mathsf{Does \ not \ give \ cosmology} \implies \mathsf{Scale \ factor \ a \ appears \ to} \\ \mathsf{be \ a \ constant. \ SOLUTION} \implies \mathsf{Extended \ nonlinear \ massive \ gravity} \\ \implies \mathsf{Quasidilaton \ theory \ and \ Mass \ Varying \ Massive \ Gravity. \ In \ \mathsf{Quasidilaton \ theory,} \end{array}$ 

G. D'Amico, G. Gabadadze, L. Hui and D. Pirtskhalava, PRD 87, 064037 (2013)
 R. Gannouji, MWH, M. Sami and E. N. Saridakis, PRD 87, 123536 (2013)

$$\mathcal{K}^{\mu}_{
u} = \delta^{\mu}_{
u} - e^{\sigma/M_{Pl}} \sqrt{g^{\mulpha}\partial_{lpha}\phi^{a}\partial_{
u}\phi^{b}\eta_{ab}}\,,$$

In Mass Varying Massive Gravity:

Q. -G. Huang, Y. -S. Piao and S. -Y. Zhou, PRD 86, 124014 (2012)

Graviton mass term  $m^2$  is replaced by a scalar field potential  $V(\phi)$ . Another potential is also added to get the late time acceleration.

Scalar field as Inflaton:

#### Scalar field as Inflaton:

Inflation  $\implies$  Early accelerated phase of the Universe.

#### Scalar field as Inflaton:

Inflation  $\implies$  Early accelerated phase of the Universe.

$$\mathcal{S} = \int d^4x \sqrt{-g} \Big[ rac{M_{
m Pl}^2}{2} R - rac{1}{2} (\partial \phi)^2 - V(\phi) \Big]$$

Where  $V(\phi)$  is the potential.

#### Scalar field as Inflaton:

Inflation  $\implies$  Early accelerated phase of the Universe.

$$\mathcal{S} = \int d^4x \sqrt{-g} \Big[ rac{M_{
m Pl}^2}{2} R - rac{1}{2} (\partial \phi)^2 - V(\phi) \Big]$$

Where  $V(\phi)$  is the potential.

Friedmann equation in flat FRW background,

$$3H^2 M_{\rm Pl}^2 = \rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$
$$(2\dot{H} + 3H^2)M_{\rm Pl}^2 = -p_{\phi} = -\frac{1}{2}\dot{\phi}^2 + V(\phi)$$

Scalar field equation of motion,

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\mathrm{d}V}{\mathrm{d}\phi} = 0$$

Slow Roll:

During slow roll:  $\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$ 

Slow Roll:

During slow roll:  $\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$  and  $\ddot{\phi} \ll 3H\dot{\phi}$ .

Slow Roll:

During slow roll:

$$rac{1}{2}\dot{\phi}^2\ll V(\phi) \quad ext{and} \quad \ddot{\phi}\ll 3H\dot{\phi}.$$

 $\Longrightarrow H^2 pprox V/3M_{
m Pl}^2$  and  $\dot{\phi} = -V'/3H.$ 

Slow Roll:

During slow roll: 
$$\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$$
 and  $\ddot{\phi} \ll 3H\dot{\phi}$ .

$$\Longrightarrow H^2 pprox V/3M_{
m Pl}^2$$
 and  $\dot{\phi} = -V'/3H$ .

Slow roll parameters:

$$\epsilon = \frac{M_{\rm Pl}^2}{2} \left(\frac{1}{V} \frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2 \qquad \eta = \frac{M_{\rm Pl}^2}{V} \frac{\mathrm{d}^2 V}{\mathrm{d}\phi^2}$$



Slow Roll:

During slow roll: 
$$\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$$
 and  $\ddot{\phi} \ll 3H\dot{\phi}$ .

$$\Longrightarrow H^2 pprox V/3M_{
m Pl}^2$$
 and  $\dot{\phi} = -V'/3H$ .

Slow roll parameters:

$$\epsilon = \frac{M_{\rm Pl}^2}{2} \left(\frac{1}{V} \frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2 \qquad \eta = \frac{M_{\rm Pl}^2}{V} \frac{\mathrm{d}^2 V}{\mathrm{d}\phi^2}$$

Slow roll condition:

$$\epsilon,\eta\ll 1$$

 $\epsilon\approx\eta\approx 1\Longrightarrow$  End of inflation  $\Longrightarrow$  Reheating  $\Longrightarrow$  Potential needs a minimum.

 $\epsilon\approx\eta\approx 1\Longrightarrow$  End of inflation  $\Longrightarrow$  Reheating  $\Longrightarrow$  Potential needs a minimum.



Figure : Schematic diagram of inflaton potential

 $\implies$  We need two flat region of the potential.

 $\implies$  We need two flat region of the potential.

- One for inflation and
- the other one for late time acceleration.

 $\implies$  We need two flat region of the potential.

- One for inflation and
- the other one for late time acceleration.

 $\implies$  In between two flat regions we need steep region of the potential to have tracker behavior.

### Quintessential Inflation



Figure : Schematic diagram of an effective potential which can give quintessential inflation.

#### Quintessential Inflation



Figure : Schematic diagram of an effective potential which can give quintessential inflation.

# Problems

- Find out a suitable potential.
- Scalar field survives until late times ⇒ potential is typically of a run-away type ⇒ One requires an alternative mechanism of reheating *e.g.*, instant preheating.
- Long kinetic regime enhances the amplitude of relic gravitational waves ⇒ violates nucleosynthesis constraints at the commencement of radiative regime.

# How to build the unified picture?

### How to build the unified picture?

CASE I Models in which the field potential has a required steep behavior for most of the history of universe but turn shallow at late times, for instance, the inverse power-law potentials ⇒ Use brane damping term for inflation ⇒ Brane inflation.
## How to build the unified picture?

- CASE I Models in which the field potential has a required steep behavior for most of the history of universe but turn shallow at late times, for instance, the inverse power-law potentials ⇒ Use brane damping term for inflation ⇒ Brane inflation.
- CASE II Models in which the field potential is shallow at early epochs giving rise to inflation, followed by the required steep behavior ⇒ Coupling between massive neutrinos and scalar field ⇒ Variable gravity.

#### Quintessential Inflation

# CASE I

- Invoke Randall-Sundrum (RS) braneworld corrections to facilitate inflation with steep potential at early epochs.
- As the field rolls down to low energy regime, the braneworld corrections disappear, giving rise to a graceful exit from inflation and thereafter the scalar field has the required behavior.



Figure : Schematic diagram of an effective potential of quintessential inflation with brane damping term.

### Quintessential Inflation

#### CASE II

Potential is flat at the early epoch  $\implies$  Gives inflation.

During lat time  $\implies$  Coupling between massive neutrinos and scalar field forms an effective potential which has a minimum  $\implies$  Field oscillates around the minimum and eventually settles down  $\implies$  Scalar of dark energy is set by the massive neutrino mass scale.





Figure : Effective potential.

- Observations confirm that recent era is dark energy dominated.
- Cosmological constant is the best model model till though it has some theoretical issues.
- There lot of models on late time acceleration but no model can solve the problem associated with cosmological constant.

# **THANK YOU**