

•We can discover up to 3 TeV with 10 fb⁻¹ (already excluded)

•We can discover up to 6 TeV or 4 TeV with 300 or 100 fb⁻¹

•We can discover point B up to 10 TeV with 100 fb⁻¹

10000

LPSC - Grenoble

Α

-1

-2

Z'_{RS} discovery potential

Useful observables :

- Total decay width
- Forward-Backward asymmetry

- •The different theoretical Z' models
- •The LHC and the ATLAS experiment
- •The ATLAS Z' discovery potential
- •How can we infer the underlying theory ?
- •Conclusions and outlook

Julien MOREL Discovery and identification of a

Fit function for the invariant mass spectrum :

D	00000000000	00000000000000	000	0000000	0000
5			000	0000000	0000

Result for the total decay width

		M_{Fit} (GeV)	Γ_{Fit} (GeV)	$\Gamma_{theo.}(\text{GeV})$
	ψ	1500.2 ± 0.3	7.8 ± 0.6	8.0
	χ	1500.8 ± 0.4	17.1 ± 0.9	17.6
M = 1.5 Iev	η	1500.6 ± 0.3	8.9 ± 0.6	9.5
GUI	LR	1499.5 ± 0.6	29.7 ± 1.3	30.6
M = 4 TeV	ADD	$3982. \pm 6.$	$168. \pm 14.$	168.
X-dim	RS	$3983. \pm 1.$	211.6 ± 0.1	-

•Fully simulated events for GUT models

and ADD

Generated avants for DS model

```
Total decay width
```

- •Well mesured with high accuracy
- •The different values provide a model

discrimination

Introduction 0000	Theoretical framework	LHC and ATLAS	Z' discovery	Underlying theory	conclusion 00
Forward-H	Backward asym	metry – Ge	enerated even	ts - GUT	

Huge statistic : 6M events

Big deformation of the forward backward asymmetry in the resonance region

Deformation of the forward backward asymmetry on the resonance

LPSC - Grenoble

Deformation of the forward backward asymmetry down to $\approx 600 \text{ GeV}$

 A_{FB} is a useful observable

LPSC - Grenoble

Julien MOREL Discovery and identification of a

For the χ model (M_z,=1500 GeV):

Introduction	Theoretical framework	LHC and ATLAS	Z' discovery	Underlying theory	conclusion 00
					T
	•Introduction	and moti	vations		
	•The differen	t theoretic	cal Z' mode	els	

- •The LHC and the ATLAS experiment
- •The ATLAS Z' discovery potential
- •How can we infer the underlying theory ?
- •Conclusions and outlook

Introduction	Theoretical framework	LHC and ATLAS	Z' discovery	Underlying theory	conclusion ● O		
Conclusio	n						
•We study Z' from different kinds of models							

 ➢ Grand Unified Theory → Model independent parameterization
➢ Extra-Dimension Theory → ADD like RS like

•The ATLAS discovery potential is high

➤Computed using a model independent method to take into account the detector efficiency

•We are able to reconstruct properly useful observables for the model discrimination

The total decay widthThe forward-backward asymmetry

Introduction 0000	Theoretical framework	LHC and ATLAS	Z' discovery	Underlying theory	conclusion ○●
Outlook					

•For the Z' study

Study other realistic points for the RS model

•For the ATLAS discovery potential

Improve the high energy electron identification

Study the systematic uncertainties due to :

energy scale and linearity parton distribution functions radiative corrections

•For the model discrimination

Study other observables : Z' rapidity, BR, ...

Study other particles : W', 2nd KK excitation, ...

. . .

Introduction

Theoretical framework

LHC and ATLAS

Z' discovery

Underlying theory

conclusion

LPSC - Grenoble

How can we infer the underlying theory?

This implies a lot of statistics

Underlying theory

conclusion

Z'RS cross section

Underlying theory

conclusion

Z'_{RS} discovery : Point B

LPSC - Grenoble

Underlying theory

conclusion

In our simulations we take into account detector acceptance ...

- •Geometrical acceptance *increases* with mass (boost effect).
- •Opposite charge selection efficiency decreases with mass.
- •We have to optimize electron identification at very high p_{T}

Z' discovery

Underlying theory

conclusion

GUT Z' at realistic luminosity

Reconstructed events

Underlying theory

conclusion

GUT Z' at realistic luminosity

Reconstructed events

LPSC - Grenoble

Introduction

Theoretical framework

LHC and ATLAS

Z' discovery

Underlying theory

conclusion

How can we use the low luminosity data in our Z' study?

Fit of the DY invariant mass between 150 and 600 GeV

Good fit for luminosity equal to few fb⁻¹

A study of the fit parameters may give us informations even at low luminosity

LPSC - Grenoble

Introduction Theoretical framework LHC and ATLAS Z' discovery Underlying theory conclusion ATLAS Discovery potential Signal = Z'

LPSC - Grenoble

)

background = Drell-Yan (γ /Z MS

Introduction

Theoretical framework

LHC and ATLAS

Z' discovery

Underlying theory

conclusion

Comparison between standard Pythia and our generator

LPSC - Grenoble

Underlying theory

conclusion

Cross section comparison

•We have to be careful with the $Z'_{RS} p_T$ and rapidity when the ISR is switched ON.

•The two generators give **compatible results** for the standard model process.

Introduction

Theoretical framework

LHC and ATLAS

Z' discovery

Underlying theory

conclusion

Z'_{GUT} discovery potential - CDDT parameterized

ATLAS discovery potential goes beyond the LEP limits in most scenarii, already with 400 pb⁻¹

LPSC - Grenoble

