Introduction 0000

LHC and ATLAS

Z' discovery

Underlying theory

conclusion

Discovery and identification of a new neutral gauge boson in the e⁺e⁻ channel with the ATLAS detector

Julien MOREL

Fabienne LEDROIT Benjamin TROCME

ATLAS Exotic group LPSC - Grenoble

23 August 2006 - Laboratoire René-J.-A.-Lévesque - Montréal

LPSC - Grenoble

Introduction 0000	Theoretical framework	LHC and ATLAS	Z' discovery	Underlying theory	conclusion 00
Plan					

- •Introduction and motivations
- •The different theoretical Z' models
- •The LHC and the ATLAS experiment
- •The ATLAS Z' discovery potential
- •How can we infer the underlying theory ?
- •Conclusions and outlook

Introduction ●000	Theoretical framework	LHC and ATLAS	Z' discovery	Underlying theory	conclusion 00
The Stand	ard model				

- It is very well verified
 It makes very good prediction
 - •Hypothetical particle : Higgs boson
 - •Lot of parameters
 - •Divergences
 - •Number of fermion familly
 - •The forces are not describe by the same gauge theory

We need to search beyond the standard model

Many theories beyond the standard model predict new neutral gauge bosons (Z') :

- Grand Unified Theory (GUT) $Z'_{\psi}, Z'_{\chi}, Z'_{\eta}$ from E(6) and Z'_{LR} from SO(10), CDDT parameterization
- Little Higgs theory New gauge bosons come from new gauge groups.
- Almost all theories with extra-dimensions New gauge bosons are standard Z/γ Kaluza-Klein excitations.

• . . .

	Introduction 0000	Theoretical framework	LHC and ATLAS	000	Z' discovery	Underlying theory	conclusion 00
Ζ	Z' at hadro	ns collider					
	Poolegr	ounde			For our	estudios	
	Dackgr	Julius				Studies	
	•Had	lronic channel	1		ppZeWe f	ocus on the	
	ratio	very small	1			channel	
	•Lep	tonic channel	1		•To st	udy the disco	very
	(main	l physic background physic background background by Direction background by the background background by the background background by the background background background by the background background by the background background by the backgroun	nd rare		potential	and the under	ling Z'
	proce	sses)			theory	1	
		ЦАS				Ĺ	
		`				1	

Tevatron ultimate limit

With 2 fb⁻¹, Tevatron Run II can probe up to $M_{z} \approx 1 \text{ TeV}$

LPSC - Grenoble

Introduction	Theoretical framework	LHC and ATLAS	Z' discovery	Underlying theory	conclusion 00
	T				

•Introduction and motivations

- •The different theoretical Z' models
- •The LHC and the ATLAS experiment
- •The ATLAS Z' discovery potential
- •How can we infer the underlying theory ?
- •Conclusions and outlook

Theoretical framework LHC and ATLAS Z' discovery Underlying theory conclusion Introduction 000000000000 0000 000 0000000000000 00 Different theoretical Z' models **Grand unified theories** •Based on the existence of a large gauge group including the SU

 $(3) \times SU(2) \times U(1)$ SM gauge group

•Provide a framework for the unification of the SM forces

Extra-dimension theories

Original ADD : [N.Arkani-Hamed, S.Dimopoulos, G.Dvali : Phys. Rev D59 086004 (1999)]

•4D brane + n compactified X-dim in which only the graviton can propagate •Provide an explanation of the weakness of gravity

Original RS : [L.Randall, R.Sundrum, Phys. Rev. Lett. 83 3370 (1999)]

•5D bulk with a warped geometry bounded with two 4D brane (Plank and TeV)

•Provide a reduction of the Plank scale on the TeV Brane

Introduction 0000	Theoretical framework	LHC and ATLAS	Z' discovery	Underlying theory	conclusion 00
Grand Un	ified Theories				
Un to n	ow we study (TIT	Carena D	aleo Dobresc	u Tait

Z' from specific models $(E_6 \text{ models} : Z'_{\psi}, Z'_{\eta}, Z'_{\chi} SO(10) \text{ model} : Z'_{LR})^{\chi}$

(CDDT) propose a model **independent** parameterisation [Phys. Rev. D70, 093009 (2004)]

It's based on the existence of a additional U(1) gauge group :

Theoretical assumptions and experimental constraints :

- Z-Z' mixing small (LEP)
- Flavour changing neutral currents constraints
- No Z' decay into new particles
- Anomaly cancellations

Julien MOREL Discovery and identification of a

Introduction 0000	Theoretical framework 000000€0	LHC and ATLAS	Z' discovery 0000000000000	Underlying theory	conclusion 00		
Selected points for our studies							
	E	xperimental c	constraints :				

- •SM charged Fermions masses and mixing angles (5% uncertainty)
- •SM neutrino masses and mixing angles (4σ)
- •Flavor Changing Neutral Current
- •S and T parameters

We study two sets of parameters (labeled A and B) :

Point A = Realistic model

Point B = Strong coupling

•Pythia with an user-defined process developed by T.Rizzo and interface with pythia by G.Azuelos and G.Polesello for the ADD model.

• Pythia with an user-defined process developed by G. Moreau based on G.Azuelos and G.Polesello code for the RS model

These generators provide Z'_{RS} calculation with full interference $Z/Z^{(1)}/Z^{(2)}/\gamma/\gamma^{(1)}/\gamma^{(2)}$

Introduct	tion Theoretical fram	nework LHC and A7	Image: Construction of the second sec	Underlying theory	conclusion
		T			

•Introduction and motivations

- •The different theoretical Z' models
- •The LHC and the ATLAS experiment
- •The ATLAS Z' discovery potential
- •How can we infer the underlying theory ?
- •Conclusions and outlook

Introduction	Theoretical framework	LHC and ATLAS	Z' discovery	Underlying theory	conclusion
0000	0000000	•00	000000000000000	000000000000	00

The Large Hadron Collider

The installation of the LHC's magnets is progressing rapidly

The beam pipe closure date will be August 2007

LHC will start in 2007 with 450 GeV per beam

- 2008 : 7 TeV per beam
 - Instantaneous luminosity = 10^{33} cm⁻² s⁻¹ (low lumi) = 10^{34} cm⁻² s⁻¹ (high lumi)

Introduction	Theoretical framework	LHC and ATLAS	Z' discovery	Underlying theory	conclusion
0000	0000000	$\odot \odot \odot$	000000000000000000000000000000000000000	00000000000	00

The ATLAS experiment

Inner detector is about to be installed (mid 2007)

288 muon Stations have been installed (47%)

LPSC - Grenoble

Julien MOREL Discovery and identification of a

Calorimeters are already installed

	Introduction 0000	Theoretical framework	LHC and ATLAS 000	Z' discovery 0000000000000	Underlying theory	conclusion 00			
ŀ	ATLAS simulations								
	Fast simulation :								
	Simulation using a parameterization of the detector resolutions								

Full simulation :

Real simulation of the whole detector using Geant4

	Mz [,] =1500 GeV	Mz [,] =4000 GeV	
	Z'GUT	UT Z'ADD Z'RS	
Generated	6M	6M	6M
Fully simulated	120k	3k -	

•Introduction and motivations

- •The different theoretical Z' models
- •The LHC and the ATLAS experiment

•The ATLAS Z' discovery potential

•How can we infer the underlying theory ?

•Conclusions and outlook

According to hep-ph/0204326 we use the significance S_{12} (realistic) :

We ask
$$|S_{12}| > 5$$
 for a discovery

Introduction 0000	Theoretical framework	LHC and ATLAS	Z' discovery 0●00000000000	Underlying theory	conclusion 00
The detec	tor efficiency				

•We use the detector efficiency (see next slides)

channel with the ATLAS

•We also use the channel for the Z'_{RS} with a CMS like detector efficiency inspired from CMS-NOTE-2005-002

CMS efficiency (acceptance, trigger, reconstruction) lies in the range 70-75 %

LPSC - Grenoble

This angular dependence is related to the Z' boost :

The efficiency depend on the model due to the Z' boost :dileptons coming from
di-leptons coming fromare more boosted than
because of different pdfs.

LPSC - Grenoble

Julien MOREL Discovery and identification of a

•All models compatible for a given parton flavour

1400

•Efficiency only depends on initial parton flavour (for a given mass)

0.45

0.4

0.35

0.3

1600

•Efficiency for events *lower* than efficiency for

0.45

0.4

0.35

0.3

600

800

1000

1200

600

800

1000

1200

1400

1600

, events *separately* (all masses and all models)

In the effective cross section calculation

We assign the right efficiency depending on the initial parton flavour and the invariant mass, event by event.

For

3 free parameters in the CDDT parametrization : x , m_{z} , and g_{z} ,

CDF exclusion plots

Good hope to discover model not yet excluded by cdf in 2008 with atlas

to discover a Z' we are looking for :

An excess of cross section due to a resonance
A lower cross section due to a destructive interference

We calculate the significance S_{12} in two regions of the mass spectra :

- In the resonance region Above $M_{\overline{1}}$ \longrightarrow Excess of events \longrightarrow
- In the interference region
 Between 500 Gev and M₁ → Lack of events →